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A multivariable Fokker-Planck equation (FPE) is used to investigate the 
equilibrium and dynamical properties of a nonlinear stochastic model. The 
model displays a phase transition. The equilibrium distributions are found 
to be non-Gaussian; the deviation from Gaussian is especially significant 
near the transition point. To study the nonequilibrium behavior of the model, 
a self-consistent dynamic mean field (SCDMF) theory is derived and used 
to transform the FPE to a systematic hierarchy of equations for the cumu- 
lant moments of the time-dependent distribution function. These equations 
are numerically solved for a variety of initial conditions. During the time 
evolution of the system from an initial unstable equilibrium state to the final 
equilibrium state, three distinct time stages are found. 

KEY WO R DS : Fokker-Planck equation ; cumulant moments; fluctuations 
far from equilibrium; nonlinear; Gaussian; non-Gaussian. 

1. I N T R O D U C T I O N  

In recent  years, there  has been a renewed interest  in the s tudy o f  f luctuat ions 
in nonl inear  systems far f rom equi l ibr ium. In this paper  we present  a s tudy 
of  the equi l ibr ium and the dynamica l  .properties of  a specific nonl inear  
s tochast ic  model ,  which displays many  o f  the character is t ics  ob ta ined  by 
others  (19) on general  stat ist ical  mechanica l  grounds.  In  these articles,  the 
techniques of  Langevin  equat ion,  m Mas te r  equat ion ,  (2~ and  F o k k e r - P l a n c k  
equat ion  (a-7~ have been used to s tudy var ious  aspects  of  the a p p r o a c h  to  
equi l ibr ium in nonl inear  systems. Also,  expans ion  in the inverse system 
size (1,2,s~ has been used to invest igate the mos t  p robab le  pa th  dur ing  the 
t ime evolut ion  and  the deviat ions f rom i t ;  specifically, an ini t ial  enhancement  
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of the variance has been predicted in many situations and the existence of 
various distinct time stages ~7,9~ has been found during the time evolution 
from an initial unstable state. 

The nonlinear stochastic model that we have studied has been introduced 
recently by Kometani and ShimizuY ~ Below we give its detailed statement. 
To study its equilibrium and nonequilibrium properties, we use the multi- 
variate Fokker-Planck equation (FPE). We discuss this as well as many of 
the equilibrium properties of the model in Section 2; we show that the model 
possesses a phase transition and find that the equilibrium distribution contains 
non-Gaussian characteristics, which are large, especially near the transition 
boundary in the parameter space of the model. In subsequent sections, we 
describe the behavior of the model system during the approach to equilibrium 
from various initial states. 

In Section 3, we develop a self-consistent dynamic mean field (SCDMF) 
theory in two different but equivalent ways. From the FPE, one can derive a 
set of coupled equations satisfied by the reduced distribution functions On- 
The first way of obtaining the SCDMF theory is to truncate the hierarchy by 
replacing P2 with Pip1. We then use the closed equation for pl to develop a 
hierarchy of equations for the diagonal cumulant moments of the full distribu- 
tion function. The infinite hierarchy of equations are first-order, coupled, 
nonlinear differential equations and their structure can be cast in a form that 
is amenable to easy numerical integration. In the second way of obtaining the 
SCDMF theory, also discussed in Section 3, we start from the multivariate 
FPE, use cumulant moment expansion, and make a much weaker assumption 
that cross cumulants are initially O(1/N). This results in the same hierarchy 
of equations for the diagonal cumulant moments. 

In Section 4, we give the results of the numerical solution of these equa- 
tions for a few interesting initial conditions and at various orders of truncation 
of the hierarchy. For all the cases studied, we find an initial enhancement of 
fluctuations. We also find three distinct time stages during the time evolution 
from an initial unstable state (class 3 of the initial conditions described in 
Section 4). We summarize the results in Section 5. 

The nonlinear stochastic model of Kometani and Shimizu can be viewed 
as a system of N anharmonic "oscillators." Each oscillator is described by 
the "coordinate"  as, which obeys a stochastic equation of motion having 
the form of a multivariable nonlinear Langevin equation: 

da/dt  = v~(a) + f ,  i = 1, 2 ..... U (1) 

where a -  {al, a2,..., aN} and the stochastic force f~ is assumed to be a 
Gaussian Markov process characterized by the diffusion constant D: 

= 0 (2a) 

f(tl)f~(t2) = 2D 3~j ~(tl - t2), D > 0 (2b) 
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with the bar over a quantity indicating the average over the Gaussian prob- 
ability distribution of the stochastic force. The "veloci ty"  of the ith oscillator 
is 

v~ = p a i -  qafl + (O/N) ~_, (aj - a,) (3a) 
J 

where q has to be positive in order to ensure stability; we shall also assume 
both p and 0 to be positive for simplicity, v~ contains the linear and cubic 
single-particle terms and in addition contains the mean-field-like interaction 
term, which we shall refer to as the Weiss field since each oscillator interacts 
(constant interaction strength 0) with every other oscillator in the system. 

In the Langevin equation (1), v~ represents the systematic force, which 
can also be viewed as derivable from a potential: v = - ~ / ~ a ,  where 

= - � 8 9  - O)~j  aj 2 + �88 ~j a~ ~ - ( O / 2 N ) ( ~  ai)  2 (3b) 

The single-particle terms would describe a potential well with a single 
minimum if 0 > p and a double minimum if 0 < p. If 0 < p, then the minima 
occur at aj = + [(p - O)/q] 1/2 and the depth of the well is - ( p  - 0)2/4q. 
Thus, if the strength of the nonlinear term q is very small and 0 < p, then the 
wells are far apart and deep, indicating the localization of various oscillators. 
In the limit, one can see that the model in Eq. (3b) would reduce to the 
Ising-Weiss model. If, in addition, we let N--~ oe, the model given in Eqs. 
(1)-(3) can also be viewed as a model with space dimensionality one and spin 
dimensionality infinity. In this limit, the mean field approximation is known (11~ 
to become exact. The analog of this feature in the time-dependent study can 
be seen in the equivalence of two descriptions of the SCDMF theory, as 
described above and in Section 3. One further point to note is that Eq. (3b) 
does not contain any "spa t ia l "  gradients; also, it does not refer to any 
underlying lattice. In this sense it is quite primitive compared to many of the 
models used in studying the equilibrium properties related to critical 
phenomena. 

Even though the model contains four parameters, it is convenient, for 
the rest of this paper, to eliminate two of these (p and q) through a simple 
scale transformation, 

pt  --~ t '  and (q/p)l/2a --~ a' (4) 

This transforms Eqs. (1)-(3) into a set of equations of the same form, except 
that p and q are replaced by unity, D goes to D' = Dq/p 2, and 0 goes to 
O' = O/p. Even though the transformation hides the strength of the linear 
and cubic terms in Eq. (1), it is clear that the model accomodates arbitrarily 
large nonlinearity. For ease of notation, we shall henceforth drop the primes 
on various symbols like t ' ,  0', D' ,  a', etc. 
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2. E Q U I L I B R I U M  PROPERTIES  

It can be shown that the nonlinear Langevin description of the model 
given in Section 1 is also equivalent to the Fokker-Planck equation (FPE) 
description for the noise-averaged probability distribution function of a at 
time t, g(a, t). The FPE equivalent to Eqs. (1)-(3) is 

82 
~t g(a, t ) +  ~ ~a~ [vt(a)g(a, t)] = D ~ ~ g(a, t) (5) 

where it is convenient to write v, = - ~ ( a ) / S a ~ ,  with 

,Jr = -�89 - O)~t ai2 + �88 ~i a'4 - (OI2N)(~s as) 2 (6) 

The single-oscillator potential ~(a~) 

~ ( a , )  = -�89 - O)a, 2 + �88 4 (6a) 

has a single minimum if the interaction strength 0 > 1 and a double minimum 
if 0 < 1. The FPE is a useful starting point to investigate various equilibrium 
and time-dependent properties of the model. Both Eqs. (1) and (5) are 
Markovian and the latter is linear in the distribution function g(a, t). It is 
well known that the equilibrium solution of Eq. (5) is 

go(a) = Q - 1  exp[-  ~(a) /D] (7a) 

where 

t" 
Q = j dNa exp[-  ~t~ (7b) 

Even though the stochastic force f in Eq. (1) is Gaussian-distributed, the 
equilibrium distribution go(a) is non-Gaussian, due to the nonlinear terms 
in Eq. (2). The diffusion constant D is seen to be analogous to temperature. 

The arithmetic mean of the oscillator coordinates ~ adN is a relevant 
dynamical variable for the model. Its average over the noise source f and the 
probability distribution g(a, t) will be denoted by x(t); x plays the role of 
the order parameter for the model and is defined to be an intensive variable. 

One can also deduce from g0(a) the equilibrium probability distribution 
for the order parameter x, 

in the limit of large N, 

(8a) 

- f (8b) 

using the saddle-point method and the integral 
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representation of the delta-function. This asymptotic result would be the 
leading term in the system size expansion of Po(x). The result is 

Po(x) ,-~ Q-1 exp N x 2 - Gx + ~b(G) (9a) 

where 

exp ~b(oJ) = da exp{om - [�89 - 1)a 2 + �88 (9b) 
co 

and ~ is the saddle point, which depends on x and is to be determined from 
the relation 

x = [d~b(oJ)/doJ]~=~ (10) 

The quantity ~b(~o) is related to ~(a~), Eq. (6a). We have not been able to 
evaluate the integral in Eq. (9b) in closed form, but the result can be written 
as an infinite series sum: 

exp~(~o) = (2D)1/%/;~=o ~ ~ [ - ~ - ~ ]  ~exp D-n-~12(z) ( l la)  

= [exp 4(0)] ~ A~oJ2~/n[ ( l lb)  

where z -- (0 - 1)/(2D) t/2 and D_n_ 1/2(z) is related to the parabolic cylinder 
functions, a The qualitative difference in ~ for 0 > 1 and 0 < 1 manifests 
itself through different functional behavior of D_~_~12(z ) for positive and 
negative values of z. Further inspection of Eqs. (9a) and (11) also reveals 
that Po(x) is non-Gaussian in character. Its origin appears to be in the quartic 
term in ~ rather than the interaction term in ~ ,  since the distribution 
remains non-Gaussian when the limit 0 ~ 0 is taken in the final result. In 
the limit of large z (this includes the limit of small D, which implies a neglect 
of the stochastic-force-related fluctuations), Po(x) approaches a Gaussian, 
however. 

The value of the order parameter x in equilibrium is xo ~- f dx xPo(x); 
for large N, it would also be equal to the most probable value 2:dPo(2)/d2 = O. 
From Eq. (9a), we find 

.~ = Xo = (D/O)wo (12a) 

Also, this value of x must satisfy Eq. (10), which implies 

. , , o  = = 
(12b) 

3 See Fig. 2 of ReL 13 and the relevant discussion in the text. 
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These two equations together determine the order parameter x0 as a 
function of the model parameters D and 0. A study of this functional 
dependence shows that there are two regions in the (D, 0) space: one in which 
the model system is in disordered phase with Xo = 0 (z < zc; 0 > 0~ for 0 > 1, 

< 0c for 0 < 1), and the second region, which corresponds to an ordered 
phase. In this phase, for every value of z > z~, there are three possible steady- 
state values of x: zero, which is unstable, and + XD. The boundary between 
the two phases can be found from Eqs. (11) and (12) and is determined via a 
relation that the parameters (De, 0o) must satisfy. This relation is 

(2De) 1/2 _ 0~ - 1 = D_a/2(zc) (13) 
0 c z~O~ D_ 112(zc) 

The solid line in Fig. 1 shows the solution ~14~ of this transcendental equation; 
0c < I corresponds to the double minimum in the single-oscillator Hamil- 
tonian ~ ,  and 0c > 1 to the single minimum. I f  we approximate ~z~ exp ~b(co) 
in Eq. (11) by a Gaussian, the approximate relation between the model 
parameters is 0c = 3D~. The result of the Gaussian approximation is shown 
as a dashed line in Fig. 1. Significant difference is found between the exact 
and the approximate results. 

In the ordered phase, one can also inquire about the behavior of the 

-5 
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Fig. 1. The boundary between the ordered and disordered phases in the model parameter 
space: solid line, solution of exact Eq. (13); dashed line, Gaussian approximation. 



Stat ist ical  Mechan ics  of  a Nonl inear  Stochast ic  M o d e l  7 

0.75  I I I I 

0.5C 

~ / / x 

0 2 f i  

o/, ,f, , . ,  
0.76 0.80 0.84 0.88 0.92 0.96 1.00 

z 

Fig. 2. The  equ i l ib r ium order  pa r ame t e r  Xo as a func t ion  o f  z = (0 - 1)/(2D) 112 for 
0 = 2. Solid line, exact  resul t ;  da shed  line, G a u s s i a n  app rox ima t ion ,  Eq. (14). 

order parameter as a function of D and 0. This query can be answered 
analytically in the Gaussian approximation (1~ and one gets 

Xo = + {(2 - 0) + [(2 + 0) 2 - 24D11'2}1/2/2 (14) 

The exact result for Xo, however, can only be obtained numerically through 
Eqs. (11) and (12). In Fig. 2 we show the comparison of the two results for 
0 = 2. It is interesting and useful to know that the Gaussian approximation 
becomes quite good away from the bifurcation point Zc. 

The behavior of x0 in the neighborhood of z~ is mean-field-like: For a 
fixed 0, if one decreases D in the neighborhood of D~, the order parameter 
varies as 

xo = [3(0~-  1)/20o21~12(D~- D) ~/2 (15) 

From the nature of the interaction term in Eq. (3), the mean-field-like 
behavior is expected. From Eqs. (11) and (12), one can also write 

z = z~ + mlo~o 2 + m 2 w o  4 + ... ( 1 6 a )  

with 

and 

ml = VD-d3V2 

(2De) 1/2 1 - 0c + 3D~ - 5DdO~ (16b) 
m2 180 1 - 3Dc/Oc 

Thus, due to Eqs. (12a) and (16), the curvature of Xo(Z) in the neighborhood 
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of the bifurcation point is known analytically. Finally, let us note that in the 
model system studied in this paper, the bifurcation point and the transition 
point are the same. One can of course construct other models where these two 
need not occur at the same point in the parameter space. 

3. S C D M F  A N D  C U M U L A N T  M O M E N T S  

In this section, we use the FPE, Eq. (5), to study the dynamical properties 
of the stochastic model. We develop a self-consistent dynamic mean field 
(SCDMF) theory in two ways and find that they are equivalent. In the first 
way, we obtain an equation that the singlet distribution p(a~, t) satisfies. 
Then we derive a hierarchy of equations that various cumulant moments of 
p(al, t) obey. In the second method, we show that the same hierarchy can 
also be obtained directly from the FPE via a somewhat weaker assumption. 
Finally, we discuss the equilibrium solutions of the hierarchy for various 
model parameters; Section 4 contains the time-dependent solutions for 
various initial conditions. 

In the time evolution study, one important point needs to be made first. 
For purely dynamical systems, it is known that the time evolution can be 
studied in a formally equivalent way by following either the distribution 
function or the dynamical variable of interest. The same is true for the 
stochastic models: If we formally write Eq. (5) as 

~g(a, Q/at = ~g(a, t) (17a) 

to define the Fokker-Planck operator ~,  and use 

f dUa A(a)~g(a) = f dNa (~+A(a)}g(a) (17b) 

to construct the adjoint operator ~+,  then we can show that 

) dNa A[a(t)lg(a, 0) = dNa A(a)g(a, t) (17c) 

where 

a(t) = [exp(~ +t)la (17d) 

average of the dynamical variable A over the time-dependent Thus the 
distribution g(a, t) is equivalent to that of A[a(t)] over the initial ensemble, 
the noise average implied in both cases. 

The time evolution for the stochastic model can be studied at various 
levels of approximation. An interesting way is to proceed via the hierarchy 
of equations satisfied by the reduced distribution functions. Let us define 

ps(al ..... as, t) = f das+~ ... dan g(a, t) (18) 
J 
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Starting from the FPE, Eq. (5), it is easy to derive the hierarchy satisfied by 
p~. A simple way to truncate it is to make an ansatz that generates the self- 
consistent dynamic mean field (SCDMF) result: 

p2(al, as, t)  ~ p(al, t)p(a2, t) (19) 

With this ansatz, the singlet distribution p(a~, t) of the stochastic model 
satisfies the following equation as N - +  ~ :  

where 

~p 
07 + ~ {[Ox(t) - (0 - 1)al - alalp} = D asp Oa~ s (20a) 

[ x( t )  = da~ a~p(al, t) (20b) 
oo 

Since the time-dependent order parameter x( t )  appears in Eq. (20), it is 
appropriate to call Eq. (19) a self-consistent ansatz. The cumulant moments 
M , ( t )  of the singlet distribution p(al, t) are determined from the coefficients 
of a" in the a expansion of in F(a, t), where 

[ F(a, t) = dal p(a~, t)e ~% 
oo 

(21) 

x( t )  is clearly synonymous with the first cumulant moment Ml( t ) .  When we 
use Eq. (20) to deduce the equation of motion for the generating function 
F(a, t) and collect the a" coefficients in the Taylor series expansion, we get 

1 dM. ( t )  
n dt 

- D3,s  + O M l ( t ) 3 ~  - (0 - 1)M,(t) 

" ( n -  1)! M , ( t ) M . _ , + 2 ( t )  
- M . + s ( t )  - 3 ,~=1 (i - i-)T~g --- i)! 

,•1 "-*+1 ( n -  1)! 
-- ~ ( i --  1 ) [ ( j -  1 ) ! ( n -  i - j +  1)! = J = l  

x M,( t )Mj( t )M~_,_j+2( t )  (22) 

These are an infinite hierarchy of first-order, coupled, nonlinear differential 
equations. The cumulant moment M,  couples to all the moments M~ with 
k ~< n + 2, due to the cubic nonlinearity in the "velocity" of the stochastic 
model. Since such differential equations occur in many areas of statistical 
physics, efficient numerical techniques to solve them (with a finite-order 
truncation) are available. The method we use is indicated in Section 4. The 
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structure of  Eq. (22) can also be reorganized for fast computat ion by rewriting 
the last two terms. The equivalent form of  these two terms that we have used 
to generate the numerical solutions for M,(t) is 

- 3M1Mn+l + 3 Mk+lM,-k+~ + ( n -  1)[ ~ ( i -  1)[ 
k=l i=l 

r(~+2-i)/21 MjM~-~-j+2 r,n-~-J+l (23a) 
• E ( j  - 1)! (n - i - j + 1)! .~,-1,j-z 

where [/] indicates the integral part  of l, 

k! (n - k)! 
1 n ! (23b) 

- 2 k! (n - k)! 

u n l e s s k =  [ 2 1 a n d  n is even 

i f k =  [2J and n is even 

and 

C~m = 1 if l, m, n are equal 

= 3 if any two of l, m, n are equal (23c) 

= 6 if l, m, n are distinct 

Even though Eq. (22) for the cumulant  moments  has been obtained via 
the t runcat ion ansatz Eq. (19), we have found an alternate approach,  which 
also leads to Eq. (22). In this approach,  we begin with the FPE,  Eq. (5), and 
deduce the equation of motion for a more detailed generating function 
~-(V, t), 

Y ( y , t ) =  < e x p ( ~ 7 ~ O ; a ~ e  (24a) 

where ~ are the fluctuation of a~ about  the most  probable path x(t) =- 
f dNa a~g(a, t), i.e., ~ = [ a ~ -  x(t)]. For  simplicity, we assume all the 
oscillators to be statistically equivalent and first derive the equation of  mot ion 
for ~- (y ,  t) f rom the FPE. We find 

0 ~ [ 8 _ 7  x3dX_~ 8 = V, x - - § ~,~D + (1 - 3x2) ~--~ 

- 3 x  + (25) 
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We now substitute in Eq. (25) the expansion 

X 
1 + ~ ~ ~ ~ 7~TWk~,k(t)+ -" (26) 

where ~ j  = (~2~,~/~7~ ~7J)7= o, etc., and equate various coefficients of powers 
of y to get the expressions for various derivatives of .~  with respect to y at 
y = 0. We note from Eq. (24) that 

= ( ~ ;  a)no = ( a i ;  a )~o  - x(t) ( 2 7 )  

which is zero by definition of x(t). Using this result, the equation of motion 
for x(t) is obtained by equating the coefficients of the linear term in y. Higher 
order derivatives of ~ ( ' f ,  t) can be related to the cumulant moments of 
g(a, t) by considering the y expansion of In ~ ( y ,  t). One gets 

/z~j(t) = <~:~:j; t)ce = ~ j ( t )  

tz, J~(t) = (~:,~:i~:k; t)~e = ~jk(t)  (28) 

etc., where statistical equivalence of different oscillators is used. The cumulant 
moments fall into two categories: The first one consists of the diagonal 
moments for which i = j = k . . . .  ; we shall denote these by M~(t), which is 
the cumulant moment of ~ ;  e.g.,/L~(t) = M3(t). The rest of the moments 
are the cross cumulant moments. The statistical equivalence of the oscillators 
implies that the cumulant moments for the first four orders will be x(t); 
M2(t), /z~2(t); M3(t), tzn2(t), /z~23(t); and M~(t), tzm2(t), tzn22(t), ~n23(t) 
and/~z~(t) .  

In the appendix we give the coupled equations of motion for these 11 
cumulant moments, which are obtained by neglecting fifth- and higher-order 
cumulant moments. From these equations, we can see that the role of diagonal 
and cross cumulant moments in the hierarchy of coupled equations is different. 
In particular, if we restrict our discussion to those initial ensembles in which 
all the cross cumulant moments are at least O(1/N) at t = 0, then their 
equations of motion lead to the conclusion that they remain O(1/N) at all 
later times [see Eqs. (A3), (A5), (A6), and (AS)-(A11)]. Thus we approximate 
the moment equations by taking the large-N limit (i.e., retain the leading 
term in the inverse system size expansion); this reduces the equations for the 
diagonal cumulant moments M~(t) to the hierarchy given in Eq. (22). 

It is interesting that even though Eq. (19) is a much stronger approxima- 
tion compared to the one that retains the leading terms in the inverse system 
size expansion, the cumulant moments follow identical time evolution. The 
equivalence of the results obtained by these two methods is the dynamic 
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analog of the known (11) property of the Ising-Weiss model in equilibrium 
that the mean field results become exact in the limit N - *  oo. Thus we refer 
to the two schemes leading to Eq. (22) as the SCDMF theory. We have used 
the cumulant moment equations (22) to (a) find the equilibrium solutions 
M,(o~) for various parameter (D, 0) values, (b) study time evolution for 
interesting initial conditions, and (c) study various approximations for their 
solution. 

The equilibrium moments M,0 can, in principle, be directly obtained 
from the equilibrium distribution discussed in Section 2, since g(a, ~ )  - 
go(a). Specifically, since these are cumulant moments related to the fluctuation 
~ = a~ - Xo, the generating function is 

~o(,,t)= f d"aexp(~r~f,) '(~aJN-x)go(a)/Po(x) (2%) 

- < e x p ( ~  ~h~:0 ; a ) (29b) 

where go(a) and Po(X) are as defined in Eqs. (7) and (8). The integrals involved 
in evaluating the equilibrium moments M,o can be approximately obtained 
via the saddle-point method. We find that in terms of g and A, defined in 
Eqs. (%) and (11), 

xo - <a~; a>o = [2A~ + 2(Ae - Axe)~ a + (Aa - 3A1A2 + 2A~a)~ s 

+ (�89 - A22 + -}A~Aa + 4A12A2 - 2Az4)N 7 + ""]~=,oo (30a) 

M2o = (dxo/d~)~=o,o (30b) 

Mso = (d2xo/dN2)~=o~o (30c) 

and 

M~o = [d3xoldW~ 3 + 3(dxo/d~)2]r~=oo (30d) 
Since these results are expressed in powers of ~, they are useful only close to 
the bifurcation point. Far from it, the Gaussian approximation is adequate. 
In the intermediate region of the parameter space, the equilibrium moments 
can be obtained from the steady-state limiting values at long times in the 
numerical solution of Eq. (22). As an example, the equation of motion for 
x ( t )  is, from Eq. (22), 

dx/d t  = x - x 3 - 3 x M 2  - M8 (31a) 

In steady state, dx/dt  vanishes and we can use Eqs. (30b) and (30c) to get 

dxo d2xo (31b) 
0 = Xo - Xo 3 - 3Xo &o ~ doJo 2 

which in turn reduces to, using Eq. (30a), 

(A1 - 6A2) + Wo2(A2 - A I  2 + 6AzA2  - 10A3) + . . . .  0 (31c) 
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Thus the parameters (De, 0c) at the bifurcation point (Section 2, Fig. 1) will 
satisfy the relation 

A1 = 6A2 (32) 

If we use the definition of An, Eq. (11), this relation reduces to Eq. (13), 
indicating the internal consistency. In order to find the equilibrium values of 
various cumulant moments in the region of the (D, 0) space away from the 
bifurcation point (but not so far away that the Gaussian approximation is 
good), we solve Eq. (22) numerically (see Section 4) by truncating the hier- 
archy at various orders. The convergence of the results is quite rapid for 
low-order moments: For ordered states, both Xo and 3//2o obtained by setting 
Men = 0 for n > 5 are found correct to four significant figures; for M3o this 
is found with n > 7, and for M~o with n > 10; for disordered states all odd 
moments vanish and the convergence of the even moments to similar degree 
of accuracy requires the same number of equations, i.e., four-figure accuracy 
in 3/20 requires truncation at n > 10. In Fig. 3, we show the behavior of M20 
as a function of z obtained from the numerical solution of Eq. (24) with 
0 = 2 and varying D. We find that M2o decreases monotonically with z. In 
Gaussian approximation, M2o can be obtained analytically; it is 

3/20 = {2 + 0 - [(2 + 0) 2 - 24D]1/2}/12, ordered phase 

= 1/3, at the bifurcation point (33) 

--- {1 - 0 + [(1 - 0) 2 + 12D]1/2}/6, disordered phase 

This is also shown for comparison (as dashed line) in Fig. 3. Equation (33) 
shows that the behavior of M2o is analytically different on the two sides of 

Fig. 3. The equilibrium second cumulant 
moment M2o as a function ofz = (0 - 1)/ 
(2D) 1/2 for 0 = 2. Solid line, exact result; 
dashed line, Gaussian approximation, 
Eq. (33). 
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the Gaussian bifurcation point (for Fig. 3, 0c = 2, Dc -- 2/3, Zc = ~/0.75 = 
0.866). Similar anomalous behavior is also apparent in the exact numerical 
data around the true bifurcation point (Zc = 0.782). 

4. T I M E  E V O L U T I O N  

In this section we give the results of the numerical solution of the 
cumulant moment equations (22). For the time evolution studies away from 
the bifurcation point, we have used a FORTRAN program MODDEQ, 
which solves a system of first-order differential equations (not exceeding 20) 
and which uses the Runge-Kutta-Gill  method of integration in conjunction 
with the Adams-Moulton predictor-corrector formulas. Close to the bifurca- 
tion point, Eq. (22) become stiff and we follow a different numerical procedure 
as developed by Gear and subsequently modified by Enright. (1~) For all the 
results reported here, the convergence of the solution of Eq. (22) at various 
orders of truncation of the hierarchy is rapid and one gets quantitatively the 
same results for truncation at n >/ 6. 

We have studied the approach to equilibrium for three different classes 
of initial conditions: 

(i) At time t = 0-,  the system is in an equilibrium ordered state 
[M~(0-) = Mn0] ; at that time the value of the order parameter is reduced by 
a factor of ten [x(0 +) -= MI(0 +) ~ 0.1x0], leaving the rest of the cumulant 
moments unchanged. This class of initial conditions can be used to study the 
behavior of the most probable path and the fluctuations around it for non- 
linear systems far from equilibrium. 

(ii) At t = 0-,  the system is in an equilibrium ordered state; at that time 
one of the two model parameters (D, 0) is changed such that the new equilib- 
rium would correspond to a disordered state (see, for example, Fig. 1). The 
time evolution would then be analogous to the situation for the first-order 
phase transition as in melting. If, for example, D is fixed and 0 is changed 
from a value less than one to greater than one, then it is clear from Eq. (6b) 
that the double-well potential is changed to a single-well one at t = 0 +. This 
is one of the possible initial conditions in this class. 

(iii) This class is the reverse of class (ii). At t = 0- ,  the system is in an 
equilibrium disordered state with x(0-)  and all odd moments zero; at that 
time one of the parameters (either D or 0) is altered to correspond to a new 
equilibrium ordered state. Now at t = 0 + the system is in the metastable 
state with two possible directions (+ x0) to go to; we make that choice by 
simultaneously changing x ( 0 - ) =  0 to x(0 +) = +x0/1000. This is not a 
thermodynamic fluctuation, since Eq. (22) already corresponds to infinite 
(N--> oe) number of oscillators in the system; it has to be perceived as a 
thermodynamically large, externally induced perturbation. Since there has 
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Table I. Equil ibrium Cumulant  M o m e n t s  for  Var ious States 
A - E  

A B C D E 
Ordered Disordered Ordered Disordered Ordered 
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D 1/3 4/3 0.15 0.5 0.25 
0 2 2 1/2 1/2 1/2 
lzl 1.22 0.61 0.91 0.5 0.71 
Xo 0.8327 0 0.7980 0 0.1388 
M2o 0.1091 0.5623 0.1497 0.5842 0.4497 
M3o -0.0173 0 -0.0687 0 -0.0511 
M~o 0.0048. -- 0.1774 0.0360 -- 0.2318 -- 0.1365 
Mso -0.0010 0 -0.0040 0 0.0726 

been considerable recent interest in the behavior of x(t) and the associated 
anomalous fluctuations near unstable equilibrium, ~2'~-7~ and since it has also 
been found that linearization around the unstable state is unsatisfactory, ~v 
this class of initial states is of  great interest for our numerical study. 

In Table I, we give the equilibrium values of the cumulant moments M~0 
for five different states (three ordered--A,  C, E - - a n d  two disordered--B, D), 
which we have used in the time evolution study. They are also shown in 
Fig. 1, which gives their position relative to the phase separation curve in the 
parameter  space. For 0c = 2 we find Dc = 0.8124 and z~ -- 0.7845, and for 
0~ = 1/2 we find D~ = 0.264 and ]z~l = 0.688. The location of state E is 
chosen such that it is an ordered state but the Gaussian approximation 
assigns to it a disordered state. 

Initial conditions of class (i) described above were used for states A, C, 
and E. In Fig. 4, we show the results for the evolution of x(t), M2(t), and 
M3(t) for state A. For the other two states the qualitative behavior of x 
and M2 was found to be similar, but the time scale over which the equilibrium 
was restored became larger (critical slowing down) for states closer to the 
bifurcation point. (Compared to the state A shown in Fig. 4, the comparable 
time span for state E was about 25 times larger.) The enhancement of M2 at 
short times also occurred in all three cases, but for state E, it was quite small 
[M2(0) = M2(250) - 0,45; 3/2(3) = 0.456]. The behavior of  Ms(t) was 
similar for states A and C, but for state E, it had only the maximum and the 
secondary minimum was absent. 

In Fig. 4, we also show (as dashed line) the result for x(t) and M2(t) if 
Eq. (22) is truncated by setting Ms(t) = 0 for n /> 3. Such a Gaussian 
approximation leads to quite a good result for the time evolution, since state 
A is far from the bifurcation point. Higher-order truncation leads to rapid 
convergence. Another approximation (#1, Section 4, Ref. 6) that has been 
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Fig. 4. x(t), M2(t), and Ma(t) for the first class of initial condition with x(0) = 0.1; 
xo, M2o, M3o for state A. Solid line, exact evolution; dashed line, Gaussian approxima- 
tion; dot-dashed line, Eq. (34). 

suggested would set M~(t) = 0 for n >/ 3 and ignore the time variation in 
M2(t), i.e., M2(t) = M2o. This leads to the result 

x(t) = x(O)xo{[x(O)] 2 + {Xo 2 - [x(0)] 2} exp(-2xo2t)} -1/2 (34) 

This is also shown in Fig. 4. The approach to the equilibrium value x0 is 
somewhat faster in this approximation. 

Initial conditions of class (ii) correspond to a situation in which the 
system is constrained to be in an ordered state at t = 0- ,  the constraint is 
removed at t = 0 +, and the evolution toward the final equilibrium disordered 
state occurs. We have solved Eq. (22) for the two cases: one in which state A 
evolves toward state B, and another where state E evolves toward state D. 
The results for x(t) and M2(t) are shown in Fig. 5 for the A -* B evolution. 
Ma(t) and M~(t) also show similar monotonic change from initial to final 
values. The qualitative behavior is identical for the E - +  D evolution. Also, 
the time scale on which the equilibrium is approached is the same in the two 
cases: By t = 10, equilibrium is achieved to three significant figures. Qualita- 
tively, the time evolution here is analogous to the following situation (see 
Fig. 6). At t = 0-,  the probability distribution p(a, t) is at the position of the 
minimum in the constrained double-well potential (shown by the arrow); at 



Sta t is t i ca l  M e c h a n i c s  of  a N o n l i n e a r  S t o c h a s t i c  M o d e l  17 

. 8  

.7 

.6 

.5 

.4 

x 
.3 

.2 

.I 

oJ 
0 

I I I I 

2 4 6 8 

t 

0.51 

0 . 4 6  

0.41 

0 . 3 6  

0.31 

D.26 

0.21 

0.16 

0. I  
0 

I 
I 

I 
I 

I 1 I 
2 4 6 

t 

t 
8 

Fig. 5. x(t) and M2(t) for the order ~ disorder transition corresponding to state A--~ 
state B. Solid line, exact evolution; dashed line, Gaussian approximation; dot-dashed 
line, Eq. (34). 

t = 0 +, the constraint is removed,  the well  is now transformed to one with a 
single min imum,  and the distribution falls. Clearly the decay would  be 
m o n o t o n i c  and the t ime scale for approach to equil ibrium is determined by 
the final state. 

In Fig. 5, we  also show the result of  the truncation that sets M~ = 0 for 
n >I 3, as a dashed line. The convergence of  the sequential  truncation at 

t=O- 

U(o) 

t=O* 

m ~ 0  

Fig. 6. Qualitative picture of the initial condition for order --+ disorder evolution. 
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n = 4, 5, 6 is rapid; x(t) at successive order straddles the exact curve and the 
result at n = 6 coincides almost exactly with the exact result; M2(t) approaches 
the exact curve from below as truncation order is increased, with convergence 
achieved at n = 6. In Fig. 5, we also show the result for the approximation 
that led to Eq. (34) for the class (i) type of initial conditions. Here also one 
can obtain the analytic result for x(t), 

x(t) = ax(O){(a 2 + [x(0)] 2) exp(2a2t) - [x(0)]2} -1/2 (35a) 

w h e r e  

a = (3M20 - I) 1/2 (35b) 

Again we find that the consequence of the neglect of the time variation in 
M2(t) and higher orders is to render the approach to equilibrium faster. In 
terms of the qualitative picture above, the entire distribution p(a, t) falls 
coherently with no time lost in the spreading out of the distribution. 

The final class of initial conditions gives rise to the most interesting time 
evolution. This is the reverse of the class (ii) initial conditions; it corresponds 
to the disorder-to-order evolution and may mimic a first-order phase change 
corresponding to freezing. We have solved Eq. (22) for the two cases: 
state B - +  state A and state D - +  state C. In Fig. 7 we show the evolution 
of x(t) and M3(t) and in Fig. 8 the evolution of M2(t) and M4(t) for the 
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Fig. 7. x(t) and M3(t) during the time 
evolution from an unstable to stable equi- 
librium. Solid line, exact; dashed line, 
Gaussian approximation; dot-dashed line, 
Eq. (34). 
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Fig. 8. M2(t) and M4(I) fo r  the same condit ions as Fig. 7. Note  the break in the t scale. 

B-+ A evolution. The results for the D---> C transition show the same 
qualitative features, except that the time evolution is slower by a factor of 
about three. In terms of the potential well picture, this slowing down can be 
understood from the fact that for states closer to the bifurcation point, the 
potential wells are shallower. 

First consider x(t) in Fig. 7. We also show the variation for the two 
approximations considered for the other two classes of initial conditions. The 
truncation M,  = 0, n >/ 3 yields, in this case, a slower approach to equilib- 
rium as compared to Fig. 5; the successive truncations again show the 
straddling effect. The Nordholm-Zwanzig approximation for this situation 
leads to Eq. (34) as in case (i). This is also shown in Fig. 7 and again shows 
relatively rapid approach to equilibrium. The comparison of (exact) x(t) and 
M3(t) shows that M3(t) reaches a minimum value around the time when x(t) 
has climbed about halfway to its equilibrium value Xo. Equilibrium is 
reached by about t = 25; also, x(t) and M3(t) do not change appreciably 
from their initial zero value for t ~< 8. The even cumulant moments M2(t) 
and M4(t) in Fig. 8 show the behavior, indicating distinct time stages during 
the approach to equilibrium. In the initial stage, both M2 and M~ show a 
rapid change. This is followed by a stage in which M2 and M4 maintain a 
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steady value; it is in the middle of this stage, roughly, that the odd moments 
pick up the pace of their time variation. In the final stage M2 and M~ again 
resume their further time variation to approach the equilibrium value. It is in 
this final stage that Ma(t) overshoots its equilibrium value, goes through an 
extremum, and returns to the final equilibrium value. 

The phenomena of a number of distinct time stages in the approach to a 
stable equilibrium from an initially unstable state of nonlinear systems has 
been noted recently by a number of authors. (4- 7~ A qualitative understanding 
of this phenomenon can be obtained by considering the behavior of p(a, t) 
when initially it is placed (almost) symmetrically at the top of the central 
maximum in the double-well potential. Note first that ignoring Ma and 
higher order curnulant moments does not alter the qualitative features of 
x ( t )  and M2(t) .  Also, at the initial time x(0) is almost zero and the half-width 
of the distribution [In 2M2(0)] 1/2 is 0.624, whereas the expected final equilib- 
rium values are 0.833 and 0.275, respectively; also, the intermediate steady 
value of M2 corresponds to a distribution with a width of 0.382; initially, the 
wings of p(a, 0) already envelop + Xo. Since x(0) already is made to tip the 
distribution eventually towards the right well, + Xo, the system already has a 
slight asymmetry with respect to x = 0. For a very short time initially, the 
system seems to sharpen the distribution as a preparation for the eventual 
fall to the right well. Once this is achieved, the distribution starts to move to 
the right ever so slowly. Somewhere around t _ 13, the order parameter x ( t )  
has the value about 0.19, almost one-half of the current width of the inter- 
mediate stage distribution; most of the bell shape is now to the right--it is 
ready to fall into the well. This is the final stage, when the left half of the 
distribution may fall faster than the right half, thus creating further necessary 
sharpening of the distribution. The development of asymmetry of p(a, oe) 
through Ma, Ms, etc., can also be understood from the fact that the right 
(or left) well is not symmetric in steepness on two sides of the minimum. 

From the SCDMF, Eq. (20), we have also studied the linear response of 
the system around the stable equilibrium (see cautionary remarks in Ref. 7 
regarding the linear response around the unstable equilibrium state). We write 

v(al) = vo(al) + O[x(t) - Xo] (36a) 

-- (~Uo/~a~ + eU~/Oa~) (36b) 

where 

Ul( t )  = - O[x(t) - xo]al (37) 

is to be ~iewed as the time-dependent perturbation. If we consider the system 
to be initially constrained in a local equilibrium with a specified value x(0) 
for the order parameter, 

p(al ,  O ) =  Qole- trdD{1 + sC:[x(O)- Xo]/(~2)o} (38a) 
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where 

and 

then we can show that 

with 

and 

= al - Xo (38b) 

(~2)o = M2o (38c) 

fo 
t 

[x(t) - xo] = [x(0) - xol~b2(t) + 0 ds X(s)[x(t - s) - xo] (39a) 

~b2(t ) = (~( t ) )o / (~2)o  (39b) 

x(t) = - (vo(al )~( t ) )o /D (39c) 

Here (-..)o is the average over the equilibrium distribution Qo 1 exp[ -  Uo(a)/D], 
and the time evolution of ~(t) is governed by Eq. (20) with x(t)  = Xo. If we 
denote [x(t) - x0)] as 3x(t) and its Laplace transform as 32(~), etc., then 
since Eq. (39a) implies 

32(,) = 3x(0)~2(,)/[1 - 0~(,)] (40) 

we anticipate a "critical slowing down"  to manifest itself when s is close 
to 1/0. Further reduction of 2(E) can be made, 

2(,) = [(0 - 1 + 3Xo2)M2o~2(,) + 3xoM3o~3(,) + (M4o + 3M~o)q~4(r -1 

(41a) 

where 

~b~(t) = ( ~ -  ~(t))o/(~n)o (41b) 

We shall discuss further aspects of this approach elsewhere; of course a 
similar analysis of the full FPE (5) can also be considered. 

We have also considered the eigenvalue analysis of the SCDMF Eq. (20) 
to obtain the lowest nonzero eigenvalue •o. If 3x(t) in Eq. (36a) is small and 
ignored, the terms Oxo in v(al) will produce an extra linear term in Uo, which 
makes the potential well on the right (if Xo > 0) more favorable. For this case 
Ag 1 would correspond to the "passage over the barrier" time scale, a problem 
first considered by Kramers. (v,~5~ If we write 

o(a, t) ~ h(a)e- %lDe-D~ (42) 

then after some analysis (essentially identical to that in Ref. 15), we get for 
the lowest nonzero eigenvalue (0 < 1) 

~o = [(1 - O)/(~2~rD)] exp[ - (1  - 0)2/4D] (43) 
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which agrees with the result of Kramers, since the height of the barrier is 
(I - 0 ) ~ / 4 .  

5, S U M M A R Y  

In this paper we have considered the equilibrium and dynamical behavior 
of a nonlinear stochastic model. The model consists of a large number of 
nonlinear oscillators, each oscillator interacting with all the others via a Weiss 
field. In the limit of weak nonlinearity, the model is analogous to the Ising- 
Weiss model. Even though the model does not contain spatial gradients, it 
does display a phase transition. 

In equilibrium, the distribution g0(a) of the oscillator coordinates and 
the distribution Po(x) of the order parameter display non-Gaussian character, 
which originates from the nonlinearity. The non-Gaussian nature of go(a) 
affects the value of the critical parameters (Oc, Do) significantly. For other 
properties also, the Gaussian approximation is quite inadequate near the 
transition point. (For this model, the transition point and the bifurcation 
point occur at the same position in the parameter space.) 

We have used the cumulant expansion to study the approach to equilib- 
rium for three different initial conditions. By using two different methods, we 
have obtained the same set of SCDMF equations [Eq. (22)] which the 
cumulant moments satisfy. The self-consistent dynamic mean field approach 
and, in particular, the ansatz in Eq. (19) could be applicable in many other 
nonlinear problems. For the initial nonequilibrium states considered in 
Section 4, the cumulant moment hierarchy has been rapidly convergent. The 
results display many interesting characteristics for the time evolution of 
cumulant moments. These are as follows: 

1. If at t = 0, x is altered by a large amount and higher order cumulant 
moments begin the time evolution with their equilibrium values, then these 
moments with n > 1 show a quick initial surge, indicating fluctuation 
enhancement, followed by a slow return to equilibrium values. 

2. During the time evolution that takes the system from an initial un- 
stable equilibrium to a final stable equilibrium, three distinct time stages are 
seen. In the initial stage, even moments show a rapid variation, while the odd 
moments retain their nearly zero values. In the intermediate stage, odd 
moments pick up the pace of their time variation, whereas the even moments 
go through a plateau and in the final stage, all the moments vary in time to 
reach their final equilibrium values. 

3. For the simulation in which an initially ordered nonequilibrium state 
goes to an equilibrium disordered state, the order parameter as well as the 
higher order cumulant moments display a monotonic approach to equilib- 
rium. 
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M a n y  of  these charac ter is t ics  c an  be u n d e r s t o o d  in  qua l i t a t ive  t e rms  
(Sect ion  4). These  resul ts  m a y  also p rov ide  fertile g r o u n d  for tes t ing  some  o f  

the  recen t  theore t ica l  ideas (v,o~ in  the  s tudy  of  n o n l i n e a r  systems.  

APPENDIX.  C U M U L A N T  M O M E N T  EQUATIONS 

2 = (1 - x 2 ) x  - 3 x M 2  - M s  (A1) 

�89 = (1 - 0 - 3 x 2 ) m 2  + Otzl2 - 3 M ~  2 - 3 x m 3  - M 4  + D 

+ ( O / N ) ( M 2  - t*12) (A2) 

�89 = (1 - 3 x ~ ) t , ~  - 3 M 2 ~ 1 ~  - 3x~1~2 - t.111~ + (O/U)(m2 - ~ )  ( A 3 )  

{M3 = (1 - 0 - 3 x 2 ) M 3  + Ot, xl 2 - 9 M 2 M 3  - 3 x M ~  - 6 x M 2 2  

+ ( O / U ) ( M a  - t zu2)  (A4) 

�89 = (1 - 32-0 - 3x 2 - 5M2 - 2/z~2).~12 + ~0/x~2a - 2/z~2Ma 

- x[2tz~n2 + /~n22 + 4M2/z12 + 2(tz~2) 2] 

+ (O/3N)(31~u2 + M a  - 4/~2a) (A5) 

�89 = (1 - 3x 2 - 3M2)/z12a - 6tz~2t~n2 - 3x[/*l12a + 2(/*t2) 2] 

+ ( 2 0 / N ) ( l z ~ 2  - ix~2a) (A6) 

�88 = (1 - 0 - 3 x 2 ) M 4  - 1 8 x M 2 M a  - 1 2 M 2 M ~  - 6(M2) a 

- 9(Ma) 2 + 0/zm2 + ( O / N ) ( M ~  - I x m 2 )  (A7) 

~t*m2'" = (1 - �88 - 3x  2 - �89  + ~0~u~33 

- 9 x [ M ~  + }t,~(M~ + ~ ) 1  

_ _  3 3 3 ~-[tzl~(~M~ + ~-/~n22 + 33/2 ~ + t ~ )  + } / ~ ( 3 M a  +/z l~z) ]  

+ ( O / 4 N ) ( M ~  + 2/*m~ + 3 t z n ~  - 6 / z ~ a )  (A8) 

1. = (1 - 0 - 3x 2 6 M 2 ) / x ~  + 0/z~l~a - 6 x l z ~ z ( M a  + 2t,1~) 

- 3 (2m~1~  + 2 M ~  + 2~h~ + M~1~2) 

+ ( O / N ) ( t z n z z  + t x m ~  - 2 t ~ n ~ )  (A9) 

g/Z112 8 1 '  = (1 - �89 - 3x z - 3t*~z _ ~9 M2)/zl12a ..]_ ~_0/~12~ 4 1  

- 3 x [ 2 t ~ t ~ 1 2  + t ~ l ~ ( t ~  + M ~ ) ]  

- ~ [2 (M~ + ~l~)t ,~.  + 3 ~ h ~  + (M~ + 2 ~ 1 ~ ) ~ , ~  

+ (2/~m~ + tzl~2~)tzl~] 

+ ( O / 2 N ) ( I z n I ~  + I~uz2 + tzn2a - 3/z~2~) (A10) 

' '  = (1 - 3x z 3M2)/x~2~a - 18x/zz2/x~2a 

- 3(2/~a~ + 3/z~12/xl~ ~ + 3tz12t~n~) + ( 3 0 / N ) ( l z n 2 a  - 1 ~ 2 ~ )  ( A l l )  
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